

Transient Dynamometer Testing of a Single Leg NOx Adsorber Combined with a Fuel Processor for Enhanced NOx Control

R. Dalla Betta, T. Boleda, J. Cizeron, D. Sheridan

Presentation Outline

- Description of the Xonon® Fuel Processor (XFP™)
- Overview of control strategy
- Simulation studies
- Dynamometer results
- Summary

Advantages of a Diesel Fuel Processor

What the fuel processor does?

#1—Efficiently converts diesel fuel to REACTIVE REDUCTANTS

Benefits of Reactive Reductants

Regenerate the NOx trap at low temperatures H₂ shown to regenerate NOx trap at 150°C

Reactive reductants used very efficiently by NOx trap

Complete regeneration of NOx trap capacity allowing minimum LNT volume

Large NOx trap capacity over wide temperature range

Application Configuration

Xonon® Fuel Processor (XFP) Functions:

- Regenerate LNT
- LNT heat up and desulfation

Also

Thermal management during PM filter regeneration

Unique XFP aspects

- Processes full exhaust stream
- Operates with high exhaust O₂ levels
- LNT regeneration cycle can be very short, 4 to 8 seconds

Time, s

130

122

126

134

138

142

Controls Development Path

Control Strategy Overview

Simulation Parameters

- System description
 - 6 liter engine with ~ 7 liter NOx trap
 - Engine data from FTP cold cycle
- Simulation input parameters—typical:
 - XFPTM light off temperature: 240°C
 - Engine throttled to reduce exhaust O₂ to 5% during rich XFP™ cycle
 - NOx trap capacity: 0.07 mols NOx (0.5 g NO₂/liter for a 7 liter trap)
 - Reductant to NOx ratio during the regeneration: 3
 - Reductant concentration out of XFP™: 6% (H₂+CO)
- Simulation output results:
 - Plot showing performance of the system during operation and regeneration cycles
 - NOx trap loading at each regeneration
 - After treatment system fuel penalty based on fuel used in XFP™ compared to engine fuel

FTP Cold Start Simulation

Observations from Simulation

Observations from Simulation

Cold Start Simulation with Loaded Trap

Cycle started with NOx trap 50% loaded (0.035 mols NOx)

Regeneration occurs at the first acceleration in the cycle since NOx trap is at capacity at this time

Comments on Simulation Results

- Simulation suggests that the XFP™ will operate well in the FTP cycle for this engine
- Fuel penalty estimates show about 2.2% fuel requirement for this cycle
 - Comparison of steady state simulations to engine test data show similar fuel penalty numbers, 10 to 30% higher
 - As simulation is improved to include heat loses, etc., agreement will improve
- These simulations assume an exhaust O₂ level of 5% during the XFP rich cycle
 - Fuel processor operation with higher O₂ levels is possible
 - In use, O₂ sensor will provide actual exhaust level during fuel processor operation

Engine Dynamometer Testing

- DT466 engine used for development of XononD™ XFP™ retrofit system (Poster on Wednesday evening)
 - 4.5 g NOx/hp-hr emissions level
 - ~12 feet (3.6 meters) exhaust length from engine outlet to after treatment system
 - Transient testing with HD FTP cycle (cold and hot)
 - Commercial vendor supplied NOx trap
- No modification of engine control
 - High exhaust O₂
- Control system
 - Implemented on third party controller designed for vehicle use
 - Interfaced to engine for speed and air flow information
 - Exhaust NOx estimated from simple engine map

FTP Transient Test—Fuel processor control

HD FTP Cycle—Effect of long exhaust pipe between engine and XFPTM and LNT

HD FTP Cycle—LNT regeneration

Desulfation Using XFP™

- Use XFP[™] in lean mode to heat LNT to desulfation temperature
 - Uniform hot exhaust to heat LNT with good control
- Rich operation to produce H₂+CO reductants for desulfation of the LNT
 - Must hold desulfation temperature during engine transients
 - Generate reductants during engine transients
- Test done using a transient cycle composed of programmed steps between AVL8 points

Transient Cycle

- For initial testing used a simple transient consisting of steps across AVL8 test points
 - Large changes in exhaust temperature and flow

Desulfation Under Transient Conditions

Desulfation—AVL 8.6

Vehicle Testing

- One CESI vehicle currently in field test with retrofit system
 - Extensive testing of the transient control strategy
- Two vehicles now operating in a field test in Texas
 - Texas Commission for Environmental Quality is providing funding and vehicles provided by City of Denton, Texas

Summary

- Control strategy and algorithms developed to operate XFP[™] fuel processor in steady state and transient engine cycles
 - Manages NOx trap regeneration
 - Operates fuel processor components for rapid heat up and rich operation
 - Provides thermal management for desulfation of NOx trap
- Dynamometer and vehicle testing
 - Control strategy implemented on a controller designed for vehicle use
 - Fuel processor control and NOx trap operation demonstrated in steady stated and transient operation
- Next steps
 - Implementation on engines with 2007 level emissions
 - Demonstration of 2010 emissions targets

Thank you

Contracts

Business: Jonathan Roberts

cccJRoberts#@CatalyticaEnergy.com

(remove ccc)

(630)762-0902

Technical: Ralph Dalla Betta

cccRDallaBetta@CatalyticaEnergy.com

(remove ccc)

(650)940-6310